Name: \qquad

1. A 0.44 kg ball is thrown straight down from a bridge with an initial velocity of $12.5 \mathrm{~m} / \mathrm{s}$. It travels for 1.5 seconds before hitting the water below. Find: (a) The height of the bridge, (b) the potential energy of the ball before it is thrown, and (c) the total energy of the ball 2.50 m above the water below.
a. $\quad d_{y}=d_{y i}+v_{i} t+\frac{1}{2} a t^{2}$

$$
=0 \mathrm{~m}+12.5 \mathrm{~m} / \mathrm{s}(1.5 \mathrm{~s})+\frac{1}{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1.5 \mathrm{~s})^{2}=29.775 \mathrm{~m}=30 \mathrm{~m}
$$

b. $P E=m g h=0.44 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot 29.775 \mathrm{~m}=128.3898 \mathrm{~J}=130 \mathrm{~J}$
c. $\sum E$ (at any point) $=\sum E_{i}$ (as long as no energy is "lost" to friction/heat)
$\sum E(2.50 \mathrm{~m}$ above water $)=P E_{i}+K E_{i}=m g h+\frac{1}{2} m v^{2}$

$$
=128.3898 \mathrm{~J}+0.5 \cdot 0.44 \mathrm{~kg} \cdot(12.5 \mathrm{~m} / \mathrm{s})^{2}=162.7648 \mathrm{~J}=160 \mathrm{~J}
$$

2. You travel down the highway, starting from rest. You travel for 0.30 hours at a speed of $70 \mathrm{mi} / \mathrm{h}$. Then you stop and eat your lunch for 30.0 min . Then you travel for 0.25 hours at $70 \mathrm{mi} / \mathrm{h}$. Then you are forced to wait for 15 minutes for roadwork. Then you travel for 15 minutes at only $35 \mathrm{mi} / \mathrm{h}$. Make a velocity vs time graph of this motion.

3. A 2.5 kg box slides across the flat surface of a table. The coefficient of kinetic friction for the table/box is 0.295 . The box is attached to a light string that passes over a low friction pulley and is connected to a 3.0 kg mass that is hanging vertically. (a) find the acceleration of the system (b) find the velocity of the 2.5 kg box after it has been dragged 0.25 m if its initial velocity was $0.25 \mathrm{~m} / \mathrm{s}$, and (c) find the kinetic energy of the box at this point.
a. $F_{\text {net sys }}=w_{3 \mathrm{~kg}}-F_{\text {fric } 2.5}=3.0 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}-0.295 \cdot 2.5 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}=22.1725 \mathrm{~N}$
$a_{\text {sys }}=F_{\text {net sys }} / m_{\text {sys }}=22.1725 \mathrm{~N} / 5.5 \mathrm{~kg}=4.031363636 \mathrm{~m} / \mathrm{s}^{2}=4.0 \mathrm{~m} / \mathrm{s}^{2}$
b. $v^{2}=v_{i}^{2}+2 a d=(0.25 \mathrm{~m} / \mathrm{s})^{2}+2\left(4.031363636 \mathrm{~m} / \mathrm{s}^{2}\right)(0.25 \mathrm{~m})=2.078181818 \mathrm{~m}^{2} / \mathrm{s}^{2}$ $v=1.441590031 \mathrm{~m} / \mathrm{s}=1.4 \mathrm{~m} / \mathrm{s}$
c. $K E=\frac{1}{2} m v^{2}=0.5 \cdot 2.5 \mathrm{~kg} \cdot(1.441590031 \mathrm{~m} / \mathrm{s})^{2}=2.597727272 \mathrm{~J}=2.6 \mathrm{~J}$
4. Find the two angles if the system is at rest.

No acceleration, so no net force across each pulley.
$T=5.00 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}=49 \mathrm{~N}$
Since the side masses are equal, each side mass will support one half of the 8 kg mass' weight.
$\mathrm{T} \cdot \sin \theta=0.5 \cdot 8.00 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\sin \theta=\left(0.5 \cdot 8.00 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}\right) / 49 \mathrm{~N}=0.8$

$\theta=\sin ^{-1}(0.8)=53.13010235^{\circ}=53.1^{\circ}$
5. Okay, here's a wonderful Tarzan swing problem. Tarzan is above the floor of the jungle on a limb. He swings out on a vine and lets go of the thing when he is at the lowest point of the swing. At this point, he is 9.0 m above the ground. How far horizontally did he travel from when he first started his swing?
$d=d_{1}+d_{2}$
($d_{1}=d_{\text {noriz }}$ from limb to bottom of swing, $d_{2}=d$ in air after letting go of vine)
$d_{1}=15 \mathrm{~m} \cdot \sin \left(32^{\circ}\right)=7.948788963 \mathrm{~m}$
$d_{2}=v_{\text {horiz }}$ (bottom of swing) \dagger (in air dropping from 9 m high)
$9.0 m=\frac{1}{2}(9.8) t^{2}$
$t=\left(9.0 \mathrm{~m} / 4.9 \mathrm{~m} / \mathrm{s}^{2}\right)^{\frac{1}{2}}=1.355261854 \mathrm{~s}$
$\Delta K E$ (bottom of swing) $=\Delta P E$ (limb to bottom of swing)
$\Delta h=15 \mathrm{~m}-15 \mathrm{~m} \cdot \cos \left(32^{\circ}\right)=2.279278558 \mathrm{~m}$
$\frac{1}{2} m v^{2}=m g h$
$v=(2 g h)^{\frac{1}{2}}=\left(2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot 2.279278558 \mathrm{~m}\right)^{\frac{1}{2}}=6.6838506 .66^{6} \mathrm{~m} / \mathrm{s}$
$d_{2}=6.683850666 \mathrm{~m} / \mathrm{s} \cdot 1.355261854 \mathrm{~s}=9.0583678466^{\mathrm{m}}$
$d=7.948788963 \mathrm{~m}+9.058367846 \mathrm{~m}=17 \mathrm{~m} \quad \because$

7. A ski jumper sails down a slope as shown. Find the vertical distance that the skier travels from the edge of the bottom of the ski jump.

Assuming the skier starts from at rest, $K E_{\text {jump }}=P E_{\text {top of slope }}$.
$\frac{1}{2} m v^{2}=m g h$
$v=(2 g h)^{\frac{1}{2}}=\left(2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot 33 \mathrm{~m}\right)^{\frac{1}{2}}=25.43226297 \mathrm{~m} / \mathrm{s}$
$v_{\text {vert }}=v \cdot \sin \left(37^{\circ}\right)=15.30551793 \mathrm{~m} / \mathrm{s}$
$v^{2}=v_{i}^{2}+2 a d$
$d=\left(v^{2}-v_{i}^{2}\right) / 2 a=\left(0-15.30551793^{2}\right) / 2(-9.8)=11.95198363 m=12 m$
8. You pull a box across the floor with a force of 425 N . The coefficient of kinetic friction is 0.305 . The mass of the crate is 125 kg . Angle θ $=35.0^{\circ}$. Find: (a) the acceleration of the box and (b) the amount of work done in moving the crate a distance of 3.50 m .

$F_{\text {up pull }}=425 \mathrm{~N} \cdot \sin \left(35.0^{\circ}\right)=243.7699854 \mathrm{~N}$
$F_{\text {horiz pull }}=425 \mathrm{~N} \cdot \cos \left(35.0^{\circ}\right)=348.1396188 \mathrm{~N}$
$F_{N}=w-F_{\text {up pull }}=125 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}-243.7699854 \mathrm{~N}=981.2300146 \mathrm{~N}$
a. $F_{\text {net }}=F_{\text {pull }}-F_{\text {fric }}=348.1396188 \mathrm{~N}-0.305 \cdot 981.2300146 \mathrm{~N}=48.86446435 \mathrm{~N}$ $a=F_{\text {net }} / m=48.86446435 \mathrm{~N} / 125 \mathrm{~kg}=0.3909157148 \mathrm{~m} / \mathrm{s}^{2}=0.391 \mathrm{~m} / \mathrm{s}^{2}$
b. $W=F \cdot d \cdot \cos \theta=425 \mathrm{~N} \cdot 3.50 \mathrm{~m} \cdot \cos \left(35^{\circ}\right)=1218.488666 \mathrm{~J}=1220 \mathrm{~J}$

